
This chapter introduces you to more techniques involving series. You will learn about the method of differences, 
finding derivatives past second order and finally how to find the Maclaurin series expansion for a given function.  

Method of differences 
The method of differences is essentially a trick that we can use to find the sums of some finite series. The idea is 
that we rewrite the general term of the series as a difference of two or more terms. This makes calculating the 
sum much easier as many of the terms will cancel out. To illustrate how this works in practice, lets look at the 
following sum: 

�
1

𝑟𝑟(𝑟𝑟 + 1)

𝑛𝑛

𝑟𝑟=1

If we were to try to sum up the series by calculating each term separately, it would look like: 

1
1(2)

+
1

2(3)
+

1
3(4)

+ ⋯+
1

𝑛𝑛(𝑛𝑛 + 1)

Trying to find an expression for this sum would prove to be quite difficult. However, if we instead split the 
original summand by partial fractions, we have that: 

1
𝑟𝑟(𝑟𝑟 + 1)

=
1
𝑟𝑟
−

1
𝑟𝑟 + 1

So rather than considering the original series, we can instead look at 

�
1
𝑟𝑟
−

1
𝑟𝑟 + 1

𝑛𝑛

𝑟𝑟=1

This turns out to be much easier to evaluate. To try to find this sum, we write out the first and last three terms in 
an effort to figure out any pattern that might exist: 

1
1
−

1
2

1
2
−

1
3

1
3
−

1
4

… 
1

𝑛𝑛 − 2
−

1
𝑛𝑛 − 1

1
𝑛𝑛 − 1

−
1
𝑛𝑛

1
𝑛𝑛
−

1
𝑛𝑛 + 1

As you can see, it turns out that most of the terms cancel out. These are colour coded. The only terms that won’t 
cancel out in this example are the first and last terms. So we can conclude that 

�
1

𝑟𝑟(𝑟𝑟 + 1)

𝑛𝑛

𝑟𝑟=1

= 1 −
1

𝑛𝑛 + 1
=

𝑛𝑛
𝑛𝑛 + 1

The above process is known as the method of differences, and can be summarised into three steps: 

1. Rewrite the general term of the series (i.e. summand) as a difference of two or more terms. This will
either be given to you from a previous part of the question or you will be expected to use partial
fractions if the general term is a fractional expression with multiple linear factors in the denominator. 

2. Write out the first and last three terms of the series in the vertical format we used above. This will
allow you to more easily notice which terms cancel out and which terms do not. 

3. Identify all terms that do not cancel out and add them all together. Simplify your result as much as
possible. 

Note that we don’t have to necessarily look at the first/last three terms. We could equivalently pick the first/last two if 
we are confident in spotting the pattern. Choosing three is advised to ensure you can still figure out the pattern for more 
complicated series. 

Example 1: Prove that                       , where 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 are constants to be found. 

Higher derivatives 
You also need to be comfortable with finding the higher derivatives of given functions. This is as simple as 
differentiating a function as many times as required. For example, to find the fourth derivative of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥), we 
must differentiate the function four times. You may need to use any techniques you learnt from Chapter 9 
(Differentiation) in Pure Year 2. 

 The nth derivative of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) is written as 𝑑𝑑
𝑛𝑛𝑦𝑦

𝑑𝑑𝑥𝑥𝑛𝑛
 , or 𝑓𝑓𝑛𝑛(𝑥𝑥). 

Example 2: Given that 𝑓𝑓(𝑥𝑥) = ln�𝑥𝑥 + √1 + 𝑥𝑥2�, show that (1 + 𝑥𝑥2)𝑓𝑓′′′(𝑥𝑥) + 3𝑥𝑥𝑓𝑓′′(𝑥𝑥) + 𝑓𝑓′(𝑥𝑥) = 0. 

Maclaurin series 
The Maclaurin series of a given function is an infinite sum of terms that estimates what the function looks like 
around the point 𝑥𝑥 = 0. This is a very powerful tool because some functions are very complicated and therefore 
difficult to analyse. For such functions, we can instead look at their Maclaurin expansions, which in many cases is 
much easier to work with.  Remember that: 

 The Maclaurin series of a given function is an approximation of that function around 𝑥𝑥 = 0.

 The more terms you find for a Maclaurin series, the better the approximation becomes.

To find the Maclaurin series expansion for a function 𝑓𝑓(𝑥𝑥), you can use the following formula: 

 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(0) + 𝑓𝑓′(0) 𝑥𝑥
1!

+ 𝑓𝑓′′(0) 𝑥𝑥
2

2!
+ ⋯+ 𝑓𝑓𝑟𝑟(0) 𝑥𝑥

𝑟𝑟

𝑟𝑟!
+ ⋯

However, there is a catch: the Maclaurin series for a given function is only valid for values of 𝑥𝑥 that cause the 
series to converge. The values of 𝑓𝑓(0),𝑓𝑓′(0), 𝑓𝑓′′(0), … must also be finite for the expansion to hold. 

 The range of validity for some standard expansions will be given in the formula booklet. If you are
given a compound function whose range of validity cannot be determined from the standard
expansions however, you can just assume the expansion is valid for all real values of 𝑥𝑥. 

Example 3: Express ln cos 𝑥𝑥 as a series in ascending powers of 𝑥𝑥 up to and including the term in 𝑥𝑥4. 

Series expansions of compound functions 
There are a set of standard Maclaurin expansions that you are given in the formulae booklet, along with their 
ranges of validity. You can use these to find series expansions of some compound functions, whose derivatives 
may be tedious to calculate or where products of functions are involved. For example, the standard expansions 
would be useful when finding the series expansion of 𝑒𝑒cos𝑥𝑥, or arctan(𝑥𝑥2).  

• 𝑥𝑥 

• 𝑠𝑠 

• 𝑎𝑎  

• . 

• . 

Example 4: Find the first three non-zero terms in the series expansion of 𝑙𝑙𝑛𝑛 �√1+2𝑥𝑥
1−3𝑥𝑥

�, and state the values of 𝑥𝑥 for 
 which the expansion is valid. 

This expression is known as the 
summand, or the general term. 

It is important that you use the same clear 
vertical structure to write each term of the 
series, so you’re able to spot the pattern. Not 
every pattern will be as clear as in this 
example. 

𝑟𝑟 = 1: 

𝑟𝑟 = 2: 

𝑟𝑟 = 3: 

𝑟𝑟 = 𝑛𝑛 − 2: 

𝑟𝑟 = 𝑛𝑛 − 1: 

𝑟𝑟 = 𝑛𝑛: 

�
3

(3𝑟𝑟 + 1)(3𝑟𝑟 + 4)
=

𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛 + 𝑐𝑐

𝑛𝑛

𝑟𝑟=1

 

First, we express the summand using partial 
fractions: 

3
(3𝑟𝑟 + 1)(3𝑟𝑟 + 4)

≡
𝐴𝐴

3𝑟𝑟 + 1
+

𝐵𝐵
3𝑟𝑟 + 4

The working has been omitted here. 
3

(3𝑟𝑟 + 1)(3𝑟𝑟 + 4)
≡

1
3𝑟𝑟 + 1

−
1

3𝑟𝑟 + 4

Now we write out some of the terms of the series. 
The terms that cancel out are matching in colour. 
The red terms however cancel out with another 
term which is not listed. 

𝑟𝑟 = 1:  
1
4
−

1
7

𝑟𝑟 = 2:  
1
7
−

1
10

… 

𝑟𝑟 = 𝑛𝑛 − 1:  
1

3𝑛𝑛 − 2
−

1
3𝑛𝑛 + 1

𝑟𝑟 = 𝑛𝑛:  
1

3𝑛𝑛 + 1
−

1
3𝑛𝑛 + 4

Notice that the only terms that don’t cancel out 
are the first and last terms, so our series can be 
expressed as: 

∴�
3

(3𝑟𝑟 + 1)(3𝑟𝑟 + 4)
=

1
4
−

1
3𝑛𝑛 + 4

𝑛𝑛

𝑟𝑟=1

Simplifying by writing the result as one fraction: =
3𝑛𝑛 + 4 − 4
4(3𝑛𝑛 + 4)

=
3𝑛𝑛

12𝑛𝑛 + 16
, so 𝑎𝑎 = 3, 𝑏𝑏 = 12, 𝑐𝑐 = 16 

To find the series expansion of ln cos 𝑥𝑥, we 
need to first differentiate the function four 
times. The chain and product rules are used 
here. 

𝑓𝑓(𝑥𝑥) = ln cos 𝑥𝑥 

𝑓𝑓′(𝑥𝑥) =
− sin 𝑥𝑥
cos 𝑥𝑥

= − tan 𝑥𝑥 

𝑓𝑓′′(𝑥𝑥) = − sec2 𝑥𝑥 
𝑓𝑓′′′(𝑥𝑥) = −2 sec2 𝑥𝑥 tan 𝑥𝑥 
𝑓𝑓′′′′(𝑥𝑥) = −2 sec4 𝑥𝑥 − 4 sec2 𝑥𝑥 tan2 𝑥𝑥 

Plugging 𝑥𝑥 = 0 into 𝑓𝑓(𝑥𝑥) and its derivatives: 

𝑓𝑓(0) = ln 1 = 0 
𝑓𝑓′(0) = − tan(0) = 0 
𝑓𝑓′′(0) = − sec2(0) = −1 
𝑓𝑓′′′(0) = −2 sec2(0) tan(0) = 0 
𝑓𝑓′′′′(0) = −2 sec4(0) − 4 sec2(0) tan(0) = −2 

Now plugging our results into the formula: 
∴ 𝑓𝑓(𝑥𝑥) ≈ 0 + 0

𝑥𝑥
1!
− 1

𝑥𝑥2

2!
+ 0

𝑥𝑥3

3!
− 2

𝑥𝑥4

4!

=
−𝑥𝑥2

2
−
𝑥𝑥4

12

𝑒𝑒𝑥𝑥 = 1 +
𝑥𝑥
1!

+
𝑥𝑥2

2!
+
𝑥𝑥3

3!
+ ⋯ , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑙𝑙𝑙𝑙 𝑥𝑥 

ln(1 + 𝑥𝑥) = 𝑥𝑥 −
𝑥𝑥2

2
+
𝑥𝑥3

3
−
𝑥𝑥4

4
+ ⋯ ,      − 1 < 𝑥𝑥 ≤ 1

𝑠𝑠𝑠𝑠𝑛𝑛𝑥𝑥 = 𝑥𝑥 −
𝑥𝑥3

3!
+
𝑥𝑥5

5!
−
𝑥𝑥7

7!
+ ⋯ , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑙𝑙𝑙𝑙 𝑥𝑥 

𝑐𝑐𝑓𝑓𝑠𝑠𝑥𝑥 = 1 −
𝑥𝑥2

2!
+
𝑥𝑥4

4!
−
𝑥𝑥6

6!
+ ⋯   , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑙𝑙𝑙𝑙 𝑥𝑥 

𝑎𝑎𝑟𝑟𝑐𝑐𝑎𝑎𝑎𝑎𝑛𝑛𝑥𝑥 = 𝑥𝑥 −
𝑥𝑥3

3
+
𝑥𝑥5

5
−
𝑥𝑥7

7
+ ⋯   ,      − 1 ≤ 𝑥𝑥 ≤ 1

We need to find the first three derivatives 
of 𝑓𝑓(𝑥𝑥) and show the equation is 
satisfied. The first derivative at first 
seems complicated but once we simplify 
it becomes much more friendly. This 
makes calculating further derivatives less 
tedious. 

𝑓𝑓(𝑥𝑥) = ln �𝑥𝑥 + �1 + 𝑥𝑥2� 

𝑓𝑓′(𝑥𝑥) =
1 + 𝑥𝑥

√1 + 𝑥𝑥2
𝑥𝑥 + √1 + 𝑥𝑥2

=
𝑥𝑥 + √1 + 𝑥𝑥2

𝑥𝑥 + √1 + 𝑥𝑥2
×

1
√1 + 𝑥𝑥2

= (1 + 𝑥𝑥2)−
1
2

𝑓𝑓′′(𝑥𝑥) =
𝑑𝑑
𝑑𝑑𝑥𝑥

�(1 + 𝑥𝑥2)−
1
2� = −𝑥𝑥(1 + 𝑥𝑥2)−

3
2

𝑓𝑓′′′(𝑥𝑥) =
𝑑𝑑
𝑑𝑑𝑥𝑥

�−𝑥𝑥(1 + 𝑥𝑥2)−
3
2� 

= −(1 + 𝑥𝑥2)−
3
2 + 3𝑥𝑥(1 + 𝑥𝑥2)−

5
2

Now looking at the first term of the LHS 
of the given expression: 

(1 + 𝑥𝑥2)𝑓𝑓′′′(𝑥𝑥) = (1 + 𝑥𝑥2) �−(1 + 𝑥𝑥2)−
3
2 + 3𝑥𝑥2(1 + 𝑥𝑥2)−

5
2� 

= −(1 + 𝑥𝑥2)−
1
2 + 3𝑥𝑥(1 + 𝑥𝑥2)−

3
2 

Looking at the second term: 3𝑥𝑥𝑓𝑓′′(𝑥𝑥) = −3𝑥𝑥2(1 + 𝑥𝑥2)−
3
2

Looking at the third term: 𝑓𝑓′(𝑥𝑥) = (1 + 𝑥𝑥2)−
1
2

Adding all three terms together gives us 0 
as required: 

∴ 𝐿𝐿𝐿𝐿𝐿𝐿 = 3𝑥𝑥(1 + 𝑥𝑥2)−
3
2 − 3𝑥𝑥^2(1 + 𝑥𝑥2)−

3
2 + (1 + 𝑥𝑥2)−

1
2

−(1 + 𝑥𝑥2)−
1
2 = 0 = 𝑅𝑅𝐿𝐿𝐿𝐿 

We use the log division law to split up the logarithm: 𝑙𝑙𝑛𝑛 �
√1 + 2𝑥𝑥
1 − 3𝑥𝑥

� = ln�√1 + 2𝑥𝑥� − ln (1 − 3𝑥𝑥) 

To find the expansion of ln�√1 + 2𝑥𝑥�, we first rewrite 
it as 1

2
ln (1 + 2x)  ln�√1 + 2𝑥𝑥� =

1
2

ln (1 + 2𝑥𝑥) 

Then to find ln (1 + 2𝑥𝑥) we use the above expansion 
for ln (1 + 𝑥𝑥) replacing 𝑥𝑥 with 2𝑥𝑥: =

1
2
�2𝑥𝑥 −

4𝑥𝑥2

2
+

8𝑥𝑥3

3
� = 𝑥𝑥 − 𝑥𝑥2 +

4
3
𝑥𝑥3 

To find the range of values for which this expansion is 
valid, we use the given range above but we substitute 
2𝑥𝑥 in place of 𝑥𝑥: 

Valid for −1 < 2𝑥𝑥 ≤ 1 ⇒ −1
2

< 𝑥𝑥 < 1
2
 

To find the expansion of ln (1 − 3𝑥𝑥) now, we use the 
given expansion again but replace 𝑥𝑥 with −3𝑥𝑥: 

ln(1 − 3𝑥𝑥) = (−3𝑥𝑥) −
(−3𝑥𝑥)2

2
+

(−3𝑥𝑥)3

3

= −3𝑥𝑥 −
9𝑥𝑥2

2
− 9𝑥𝑥3 

To find the range of values for which this expansion is 
valid, we use the given range above but we substitute  
−3𝑥𝑥 in place of 𝑥𝑥: 

Valid for −1 < −3𝑥𝑥 ≤ 1 ⇒ −1
3
≤ 𝑥𝑥 < 1

3
 

(Signs flip when dividing by a negative quantity) 

To find the required expansion now, we just subtract 
the expansions we found: 𝑙𝑙𝑛𝑛 �

√1 + 2𝑥𝑥
1 − 3𝑥𝑥

� ≈ �𝑥𝑥 − 𝑥𝑥2 +
4
3
𝑥𝑥3� − �−3𝑥𝑥 −

9𝑥𝑥2

2
− 9𝑥𝑥3� 

The range of validity of 𝑥𝑥 is simply given by where both 
of the ranges we found earlier are satisfied. ≈ 4𝑥𝑥 +

7
2
𝑥𝑥2 +

31
3
𝑥𝑥3 ,  −

1
3
≤ 𝑥𝑥 <

1
3

These are the ranges of 𝑥𝑥 for which 
these expansions are valid. You may 
need to manipulate these to find 
the ranges of validity for compound 
functions. (See example 4) 

The terms 1
4
 and 1

𝑛𝑛−2
 will also cancel out, but 

with terms that are not listed. 
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